Департамент образования г. Москвы
Московский институт открытого образования
Примерные задания школьного тура математической олимпиады
8 класс
1. Числитель дроби увеличили на 5, а знаменатель – на 2 (числитель и знаменатель – целые положительные числа). При этом значение дроби уменьшилось. Приведите пример, как такое могло произойти.
2. Дано трехзначное число ABB. Если перемножить его цифры, то получится двузначное число АС, а если перемножить цифры АС, то получится С. Найдите исходное число.
3. Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. Когда поезд отъезжал, каждый из них насчитал еще несколько скамеек, причем один из них насчитал в три раза больше, чем другой. А сколько насчитал третий?
4. В треугольнике АВС (см. рисунок) CD – биссектриса угла ACB, АВ=ВС, BD=BK, BL=CL. Докажите, что BF – биссектриса угла CBE.
5. Имеется 6 гирь: по паре зеленых, красных и белых. В каждой паре одна гиря тяжелая, а другая – легкая, причем все легкие весят одинаково и все тяжелые весят одинаково. Можно ли определить 3 тяжелые гири за два взвешивания на чашечных весах?
6. У каждого трехзначного числа нашли произведение его цифр. Получилось 900 произведений от 1·0·0 до 9·9·9. Чему равна их сумма?